Interface Instrumentation
There are two ways to obtain an instance of the
Instrumentation
interface:
When a JVM is launched in a way that indicates an agent class. In that case an
Instrumentation
instance is passed to thepremain
method of the agent class.When a JVM provides a mechanism to start agents sometime after the JVM is launched. In that case an
Instrumentation
instance is passed to theagentmain
method of the agent code.
These mechanisms are described in the package specification.
Once an agent acquires an Instrumentation
instance,
the agent may call methods on the instance at any time.
- API Note:
- This interface is not intended to be implemented outside of the java.instrument module.
- Since:
- 1.5
-
Method Summary
Modifier and TypeMethodDescriptionvoid
addTransformer
(ClassFileTransformer transformer) Registers the supplied transformer.void
addTransformer
(ClassFileTransformer transformer, boolean canRetransform) Registers the supplied transformer.void
Specifies a JAR file with instrumentation classes to be defined by the bootstrap class loader.void
appendToSystemClassLoaderSearch
(JarFile jarfile) Specifies a JAR file with instrumentation classes to be defined by the system class loader.Class[]
Returns an array of all classes currently loaded by the JVM.Class[]
getInitiatedClasses
(ClassLoader loader) Returns an array of all classes whichloader
can find by name viaClassLoader::loadClass
,Class::forName
and bytecode linkage.long
getObjectSize
(Object objectToSize) Returns an implementation-specific approximation of the amount of storage consumed by the specified object.boolean
isModifiableClass
(Class<?> theClass) Tests whether a class is modifiable by retransformation or redefinition.boolean
isModifiableModule
(Module module) Tests whether a module can be modified withredefineModule
.boolean
Returns whether the current JVM configuration supports setting a native method prefix.boolean
Returns whether or not the current JVM configuration supports redefinition of classes.boolean
Returns whether or not the current JVM configuration supports retransformation of classes.void
redefineClasses
(ClassDefinition... definitions) Redefine the supplied set of classes using the supplied class files.void
redefineModule
(Module module, Set<Module> extraReads, Map<String, Set<Module>> extraExports, Map<String, Set<Module>> extraOpens, Set<Class<?>> extraUses, Map<Class<?>, List<Class<?>>> extraProvides) Redefine a module to expand the set of modules that it reads, the set of packages that it exports or opens, or the services that it uses or provides.boolean
removeTransformer
(ClassFileTransformer transformer) Unregisters the supplied transformer.void
retransformClasses
(Class<?>... classes) Retransform the supplied set of classes.void
setNativeMethodPrefix
(ClassFileTransformer transformer, String prefix) This method modifies the failure handling of native method resolution by allowing retry with a prefix applied to the name.
-
Method Details
-
addTransformer
Registers the supplied transformer. All future class definitions will be seen by the transformer, except definitions of classes upon which any registered transformer is dependent. The transformer is called when classes are loaded, when they are redefined. and ifcanRetransform
is true, when they are retransformed.ClassFileTransformer
defines the order of transform calls. If a transformer throws an exception during execution, the JVM will still call the other registered transformers in order. The same transformer may be added more than once, but it is strongly discouraged -- avoid this by creating a new instance of transformer class.This method is intended for use in instrumentation, as described in the class specification.
- Parameters:
transformer
- the transformer to registercanRetransform
- can this transformer's transformations be retransformed- Throws:
NullPointerException
- if passed anull
transformerUnsupportedOperationException
- ifcanRetransform
is true and the current configuration of the JVM does not allow retransformation (isRetransformClassesSupported()
is false)- Since:
- 1.6
-
addTransformer
Registers the supplied transformer.Same as
addTransformer(transformer, false)
.- Parameters:
transformer
- the transformer to register- Throws:
NullPointerException
- if passed anull
transformer- See Also:
-
removeTransformer
Unregisters the supplied transformer. Future class definitions will not be shown to the transformer. Removes the most-recently-added matching instance of the transformer. Due to the multi-threaded nature of class loading, it is possible for a transformer to receive calls after it has been removed. Transformers should be written defensively to expect this situation.- Parameters:
transformer
- the transformer to unregister- Returns:
- true if the transformer was found and removed, false if the transformer was not found
- Throws:
NullPointerException
- if passed anull
transformer
-
isRetransformClassesSupported
boolean isRetransformClassesSupported()Returns whether or not the current JVM configuration supports retransformation of classes. The ability to retransform an already loaded class is an optional capability of a JVM. Retransformation will only be supported if theCan-Retransform-Classes
manifest attribute is set totrue
in the agent JAR file (as described in the package specification) and the JVM supports this capability. During a single instantiation of a single JVM, multiple calls to this method will always return the same answer.- Returns:
- true if the current JVM configuration supports retransformation of classes, false if not.
- Since:
- 1.6
- See Also:
-
retransformClasses
Retransform the supplied set of classes.This function facilitates the instrumentation of already loaded classes. When classes are initially loaded or when they are redefined, the initial class file bytes can be transformed with the
ClassFileTransformer
. This function reruns the transformation process (whether or not a transformation has previously occurred). This retransformation follows these steps:- starting from the initial class file bytes
- for each transformer that was added with
canRetransform
false, the bytes returned bytransform
during the last class load or redefine are reused as the output of the transformation; note that this is equivalent to reapplying the previous transformation, unaltered; except thattransform
method is not called. - for each transformer that was added with
canRetransform
true, thetransform
method is called in these transformers - the transformed class file bytes are installed as the new definition of the class
The order of transformation is described in
ClassFileTransformer
. This same order is used in the automatic reapplication of retransformation incapable transforms.The initial class file bytes represent the bytes passed to
ClassLoader.defineClass
orredefineClasses
(before any transformations were applied), however they might not exactly match them. The constant pool might not have the same layout or contents. The constant pool may have more or fewer entries. Constant pool entries may be in a different order; however, constant pool indices in the bytecodes of methods will correspond. Some attributes may not be present. Where order is not meaningful, for example the order of methods, order might not be preserved.This method operates on a set in order to allow interdependent changes to more than one class at the same time (a retransformation of class A can require a retransformation of class B).
If a retransformed method has active stack frames, those active frames continue to run the bytecodes of the original method. The retransformed method will be used on new invokes.
This method does not cause any initialization except that which would occur under the customary JVM semantics. In other words, redefining a class does not cause its initializers to be run. The values of static variables will remain as they were prior to the call.
Instances of the retransformed class are not affected.
The supported class file changes are described in JVM TI RetransformClasses. The class file bytes are not checked, verified and installed until after the transformations have been applied, if the resultant bytes are in error this method will throw an exception.
If this method throws an exception, no classes have been retransformed.
This method is intended for use in instrumentation, as described in the class specification.
- Parameters:
classes
- array of classes to retransform; a zero-length array is allowed, in this case, this method does nothing- Throws:
UnmodifiableClassException
- if a specified class cannot be modified (isModifiableClass(java.lang.Class<?>)
would returnfalse
)UnsupportedOperationException
- if the current configuration of the JVM does not allow retransformation (isRetransformClassesSupported()
is false) or the retransformation attempted to make unsupported changesClassFormatError
- if the data did not contain a valid classNoClassDefFoundError
- if the name in the class file is not equal to the name of the classUnsupportedClassVersionError
- if the class file version numbers are not supportedClassCircularityError
- if the new classes contain a circularityLinkageError
- if a linkage error occursNullPointerException
- if the supplied classes array or any of its components isnull
.- Since:
- 1.6
- See Also:
-
isRedefineClassesSupported
boolean isRedefineClassesSupported()Returns whether or not the current JVM configuration supports redefinition of classes. The ability to redefine an already loaded class is an optional capability of a JVM. Redefinition will only be supported if theCan-Redefine-Classes
manifest attribute is set totrue
in the agent JAR file (as described in the package specification) and the JVM supports this capability. During a single instantiation of a single JVM, multiple calls to this method will always return the same answer.- Returns:
- true if the current JVM configuration supports redefinition of classes, false if not.
- See Also:
-
redefineClasses
void redefineClasses(ClassDefinition... definitions) throws ClassNotFoundException, UnmodifiableClassException Redefine the supplied set of classes using the supplied class files.This method is used to replace the definition of a class without reference to the existing class file bytes, as one might do when recompiling from source for fix-and-continue debugging. Where the existing class file bytes are to be transformed (for example in bytecode instrumentation)
retransformClasses
should be used.This method operates on a set in order to allow interdependent changes to more than one class at the same time (a redefinition of class A can require a redefinition of class B).
If a redefined method has active stack frames, those active frames continue to run the bytecodes of the original method. The redefined method will be used on new invokes.
This method does not cause any initialization except that which would occur under the customary JVM semantics. In other words, redefining a class does not cause its initializers to be run. The values of static variables will remain as they were prior to the call.
Instances of the redefined class are not affected.
The supported class file changes are described in JVM TI RedefineClasses. The class file bytes are not checked, verified and installed until after the transformations have been applied, if the resultant bytes are in error this method will throw an exception.
If this method throws an exception, no classes have been redefined.
This method is intended for use in instrumentation, as described in the class specification.
- Parameters:
definitions
- array of classes to redefine with corresponding definitions; a zero-length array is allowed, in this case, this method does nothing- Throws:
UnmodifiableClassException
- if a specified class cannot be modified (isModifiableClass(java.lang.Class<?>)
would returnfalse
)UnsupportedOperationException
- if the current configuration of the JVM does not allow redefinition (isRedefineClassesSupported()
is false) or the redefinition attempted to make unsupported changesClassFormatError
- if the data did not contain a valid classNoClassDefFoundError
- if the name in the class file is not equal to the name of the classUnsupportedClassVersionError
- if the class file version numbers are not supportedClassCircularityError
- if the new classes contain a circularityLinkageError
- if a linkage error occursNullPointerException
- if the supplied definitions array or any of its components isnull
ClassNotFoundException
- Can never be thrown (present for compatibility reasons only)- See Also:
-
isModifiableClass
Tests whether a class is modifiable by retransformation or redefinition. If a class is modifiable then this method returnstrue
. If a class is not modifiable then this method returnsfalse
.For a class to be retransformed,
isRetransformClassesSupported()
must also be true. But the value ofisRetransformClassesSupported()
does not influence the value returned by this function. For a class to be redefined,isRedefineClassesSupported()
must also be true. But the value ofisRedefineClassesSupported()
does not influence the value returned by this function.Primitive classes (for example,
java.lang.Integer.TYPE
) and array classes are never modifiable.- Parameters:
theClass
- the class to check for being modifiable- Returns:
- whether or not the argument class is modifiable
- Throws:
NullPointerException
- if the specified class isnull
.- Since:
- 1.6
- See Also:
-
getAllLoadedClasses
Class[] getAllLoadedClasses()Returns an array of all classes currently loaded by the JVM. The returned array includes all classes and interfaces, including hidden classes or interfaces, and array classes of all types.- Returns:
- an array containing all the classes loaded by the JVM, zero-length if there are none
-
getInitiatedClasses
Returns an array of all classes whichloader
can find by name viaClassLoader::loadClass
,Class::forName
and bytecode linkage. That is, all classes for whichloader
has been recorded as an initiating loader. If the suppliedloader
isnull
, classes that the bootstrap class loader can find by name are returned.The returned array does not include hidden classes or interfaces or array classes whose element type is a hidden class or interface. as they cannot be discovered by any class loader.
- Parameters:
loader
- the loader whose initiated class list will be returned- Returns:
- an array containing all classes which
loader
can find by name; zero-length if there are none
-
getObjectSize
Returns an implementation-specific approximation of the amount of storage consumed by the specified object. The result may include some or all of the object's overhead, and thus is useful for comparison within an implementation but not between implementations. The estimate may change during a single invocation of the JVM.- Parameters:
objectToSize
- the object to size- Returns:
- an implementation-specific approximation of the amount of storage consumed by the specified object
- Throws:
NullPointerException
- if the supplied Object isnull
.
-
appendToBootstrapClassLoaderSearch
Specifies a JAR file with instrumentation classes to be defined by the bootstrap class loader.When the virtual machine's built-in class loader, known as the "bootstrap class loader", unsuccessfully searches for a class, the entries in the
JAR file
will be searched as well.This method may be used multiple times to add multiple JAR files to be searched in the order that this method was invoked.
The agent should take care to ensure that the JAR does not contain any classes or resources other than those to be defined by the bootstrap class loader for the purpose of instrumentation. Failure to observe this warning could result in unexpected behavior that is difficult to diagnose. For example, suppose there is a loader L, and L's parent for delegation is the bootstrap class loader. Furthermore, a method in class C, a class defined by L, makes reference to a non-public accessor class C$1. If the JAR file contains a class C$1 then the delegation to the bootstrap class loader will cause C$1 to be defined by the bootstrap class loader. In this example an
IllegalAccessError
will be thrown that may cause the application to fail. One approach to avoiding these types of issues, is to use a unique package name for the instrumentation classes.The Java Virtual Machine Specification specifies that a subsequent attempt to resolve a symbolic reference that the Java virtual machine has previously unsuccessfully attempted to resolve always fails with the same error that was thrown as a result of the initial resolution attempt. Consequently, if the JAR file contains an entry that corresponds to a class for which the Java virtual machine has unsuccessfully attempted to resolve a reference, then subsequent attempts to resolve that reference will fail with the same error as the initial attempt.
- Parameters:
jarfile
- The JAR file to be searched when the bootstrap class loader unsuccessfully searches for a class.- Throws:
NullPointerException
- Ifjarfile
isnull
.- Since:
- 1.6
- See Also:
-
appendToSystemClassLoaderSearch
Specifies a JAR file with instrumentation classes to be defined by the system class loader. When the system class loader for delegation (seegetSystemClassLoader()
) unsuccessfully searches for a class, the entries in theJarFile
will be searched as well.This method may be used multiple times to add multiple JAR files to be searched in the order that this method was invoked.
The agent should take care to ensure that the JAR does not contain any classes or resources other than those to be defined by the system class loader for the purpose of instrumentation. Failure to observe this warning could result in unexpected behavior that is difficult to diagnose (see
appendToBootstrapClassLoaderSearch
).The system class loader supports adding a JAR file to be searched if it implements a method named
appendToClassPathForInstrumentation
which takes a single parameter of typejava.lang.String
. The method is not required to havepublic
access. The name of the JAR file is obtained by invoking thegetName()
method on thejarfile
and this is provided as the parameter to theappendToClassPathForInstrumentation
method.The Java Virtual Machine Specification specifies that a subsequent attempt to resolve a symbolic reference that the Java virtual machine has previously unsuccessfully attempted to resolve always fails with the same error that was thrown as a result of the initial resolution attempt. Consequently, if the JAR file contains an entry that corresponds to a class for which the Java virtual machine has unsuccessfully attempted to resolve a reference, then subsequent attempts to resolve that reference will fail with the same error as the initial attempt.
This method does not change the value of
java.class.path
system property
.- Parameters:
jarfile
- The JAR file to be searched when the system class loader unsuccessfully searches for a class.- Throws:
UnsupportedOperationException
- If the system class loader does not support appending a a JAR file to be searched.NullPointerException
- Ifjarfile
isnull
.- Since:
- 1.6
- See Also:
-
isNativeMethodPrefixSupported
boolean isNativeMethodPrefixSupported()Returns whether the current JVM configuration supports setting a native method prefix. The ability to set a native method prefix is an optional capability of a JVM. Setting a native method prefix will only be supported if theCan-Set-Native-Method-Prefix
manifest attribute is set totrue
in the agent JAR file (as described in the package specification) and the JVM supports this capability. During a single instantiation of a single JVM, multiple calls to this method will always return the same answer.- Returns:
- true if the current JVM configuration supports setting a native method prefix, false if not.
- Since:
- 1.6
- See Also:
-
setNativeMethodPrefix
This method modifies the failure handling of native method resolution by allowing retry with a prefix applied to the name. When used with theClassFileTransformer
, it enables native methods to be instrumented.Since native methods cannot be directly instrumented (they have no bytecodes), they must be wrapped with a non-native method which can be instrumented. For example, if we had:
native boolean foo(int x);
We could transform the class file (with the ClassFileTransformer during the initial definition of the class) so that this becomes:
boolean foo(int x) { ... record entry to foo ... return wrapped_foo(x); } native boolean wrapped_foo(int x);
Where
foo
becomes a wrapper for the actual native method with the appended prefix "wrapped_". Note that "wrapped_" would be a poor choice of prefix since it might conceivably form the name of an existing method thus something like "$$$MyAgentWrapped$$$_" would be better but would make these examples less readable.The wrapper will allow data to be collected on the native method call, but now the problem becomes linking up the wrapped method with the native implementation. That is, the method
wrapped_foo
needs to be resolved to the native implementation offoo
, which might be:Java_somePackage_someClass_foo(JNIEnv* env, jint x)
This function allows the prefix to be specified and the proper resolution to occur. Specifically, when the standard resolution fails, the resolution is retried taking the prefix into consideration. There are two ways that resolution occurs, explicit resolution with the JNI function
RegisterNatives
and the normal automatic resolution. ForRegisterNatives
, the JVM will attempt this association:method(foo) -> nativeImplementation(foo)
When this fails, the resolution will be retried with the specified prefix prepended to the method name, yielding the correct resolution:
method(wrapped_foo) -> nativeImplementation(foo)
For automatic resolution, the JVM will attempt:
method(wrapped_foo) -> nativeImplementation(wrapped_foo)
When this fails, the resolution will be retried with the specified prefix deleted from the implementation name, yielding the correct resolution:
method(wrapped_foo) -> nativeImplementation(foo)
Note that since the prefix is only used when standard resolution fails, native methods can be wrapped selectively.
Since each
ClassFileTransformer
can do its own transformation of the bytecodes, more than one layer of wrappers may be applied. Thus each transformer needs its own prefix. Since transformations are applied in order, the prefixes, if applied, will be applied in the same order (seeaddTransformer
). Thus if three transformers applied wrappers,foo
might become$trans3_$trans2_$trans1_foo
. But if, say, the second transformer did not apply a wrapper tofoo
it would be just$trans3_$trans1_foo
. To be able to efficiently determine the sequence of prefixes, an intermediate prefix is only applied if its non-native wrapper exists. Thus, in the last example, even though$trans1_foo
is not a native method, the$trans1_
prefix is applied since$trans1_foo
exists.- Parameters:
transformer
- The ClassFileTransformer which wraps using this prefix.prefix
- The prefix to apply to wrapped native methods when retrying a failed native method resolution. If prefix is eithernull
or the empty string, then failed native method resolutions are not retried for this transformer.- Throws:
NullPointerException
- if passed anull
transformer.UnsupportedOperationException
- if the current configuration of the JVM does not allow setting a native method prefix (isNativeMethodPrefixSupported()
is false).IllegalArgumentException
- if the transformer is not registered (seeaddTransformer
).- Since:
- 1.6
-
redefineModule
void redefineModule(Module module, Set<Module> extraReads, Map<String, Set<Module>> extraExports, Map<String, Set<Module>> extraOpens, Set<Class<?>> extraUses, Map<Class<?>, List<Class<?>>> extraProvides) Redefine a module to expand the set of modules that it reads, the set of packages that it exports or opens, or the services that it uses or provides. This method facilitates the instrumentation of code in named modules where that instrumentation requires changes to the set of modules that are read, the packages that are exported or open, or the services that are used or provided.This method cannot reduce the set of modules that a module reads, nor reduce the set of packages that it exports or opens, nor reduce the set of services that it uses or provides. This method is a no-op when invoked to redefine an unnamed module.
When expanding the services that a module uses or provides then the onus is on the agent to ensure that the service type will be accessible at each instrumentation site where the service type is used. This method does not check if the service type is a member of the module or in a package exported to the module by another module that it reads.
The
extraExports
parameter is the map of additional packages to export. TheextraOpens
parameter is the map of additional packages to open. In both cases, the map key is the fully-qualified name of the package as defined in section 6.5.3 of The Java Language Specification , for example,"java.lang"
. The map value is the non-empty set of modules that the package should be exported or opened to.The
extraProvides
parameter is the additional service providers for the module to provide. The map key is the service type. The map value is the non-empty list of implementation types, each of which is a member of the module and an implementation of the service.This method is safe for concurrent use and so allows multiple agents to instrument and update the same module at around the same time.
- Parameters:
module
- the module to redefineextraReads
- the possibly-empty set of additional modules to readextraExports
- the possibly-empty map of additional packages to exportextraOpens
- the possibly-empty map of additional packages to openextraUses
- the possibly-empty set of additional services to useextraProvides
- the possibly-empty map of additional services to provide- Throws:
IllegalArgumentException
- IfextraExports
orextraOpens
contains a key that is not a package in the module; ifextraExports
orextraOpens
maps a key to an empty set; if a value in theextraProvides
map contains a service provider type that is not a member of the module or an implementation of the service; orextraProvides
maps a key to an empty listUnmodifiableModuleException
- if the module cannot be modifiedNullPointerException
- if any of the arguments arenull
or any of the Sets or Maps contains anull
key or value- Since:
- 9
- See Also:
-
isModifiableModule
Tests whether a module can be modified withredefineModule
. If a module is modifiable then this method returnstrue
. If a module is not modifiable then this method returnsfalse
. This method always returnstrue
when the module is an unnamed module (as redefining an unnamed module is a no-op).- Parameters:
module
- the module to test if it can be modified- Returns:
true
if the module is modifiable, otherwisefalse
- Throws:
NullPointerException
- if the module isnull
- Since:
- 9
-